MM
Learning Seminar
Week $3 X:$

On termination of flips.
Shokrov and Briar's approaches.

On termination of flips:

Termination in dim $n-1$
\Longrightarrow Existence of flips in $\operatorname{dim} n$.
Existence of flips in dim $n-1 \quad$ (Hacon-MeKern2n).

Log discrepancy:
$(X, \Delta) \log$ pair. E prime divisor over X.
$\varphi: Y \rightarrow X$ pros birational marphism extroety E, then we can write $K_{\tau}+\Delta_{\tau}=\varphi^{*}\left(K_{x}+\Delta\right)$.

We define the log discrepancy of (X, Δ) at E

$$
a_{E}(x, \Delta)=1-\operatorname{coeff}_{E}(\Delta r)
$$

(X, Δ) is kit if $a_{E}(X, \Delta) \geqslant 0$ for all E
(x, Δ) is k if $a_{E}(x, \Delta) \geqslant 0$ for all E.

Minimal log discrepancy:
$\operatorname{mb}\left(X, \Delta_{i x}\right)=\min \left\{a_{E}(X, \Delta) \mid C_{X}(E)=x\right\}$

Examples: $\quad m l d\left(\left.A\right|^{n} ; 0\right)=n$

$$
X_{n} \text { has a } A_{n}-\operatorname{sing} \text { at } x, \quad x^{2}+y^{2}+z^{n-1}=0 \text {. }
$$

Then $\operatorname{mil}\left(X_{n} ; x\right)=1$.
mid $\left(C_{n} ; y\right)=\frac{2}{n}$, where C_{n} is the cone over a rat curve of degree n
$\operatorname{mid}($ Ceiv $)=0$, where C_{e} is the cone over an elliphr curve
we will use this invariant to study flips.
Lemma (Monotonicity): Let

$$
\begin{gathered}
(X, \Delta)-\Omega^{R}\left(X^{+}, \Delta^{+}\right) \\
\varphi V^{\swarrow / \varphi^{+}}
\end{gathered}
$$

be 2 flip for $K_{x}+\Delta$. For every E over X, we have

$$
a_{E}(x, \Delta) \leqslant a_{E}\left(X^{+}, \Delta^{+}\right)
$$

Furthermore, the inequality is strid if $C_{x}(E) \leq E_{x}(\pi)$.

Definition: $f: X \rightarrow X^{+}$is a d-contraction if the complete transform of each irreducible subvariety of $\operatorname{dim} \geq n-d$ is well-defined and its image hive the same dim or $\operatorname{dim} \leqslant n-d-1$.
$n-$ contraction $=$ regular morphism.
1 - contraction $=$ birational contraction.
$b_{i}-d$-birational:f and f^{-1} are d-contractio nr
Lemma: Any sequence of d-contraction $x_{i} \ldots x_{i+1}$ of projective varieties birationally d-stabilizes, that is. for i>>0, they are all $b_{i}-d$-birational.

Idea: Instead of looking at $\rho(x) \quad(d=1)$, we consider the rank of the group of alg cycles of coding modulo alg equine

Conjectures on minimal log discrepancies:
Conjecture (Shokurov, 2000; ACC): Let n be a positive integer.
Let $\Lambda \subseteq \mathbb{R}$ be a set satisfying the descending chain condition (DCC).
Then the set

$$
\{m|d(X, \Delta i x)|(X, \Delta) n-\operatorname{dim} k \mid t, \operatorname{coeff}(\Delta) \leq \Omega\} .
$$

satisfies the ascending chain condition.
There is an upper bound for the mid of n-tim.
Conjecture (Ambro, 20005, LSC): (X, Δ) ic pair. $x \in X$ be a d-dimensional point. There exists $U \subseteq X$ so that for every f-dim point x^{\prime} for which $\bar{x}^{\prime} \cap U_{\neq \phi}$. we have, $\quad \operatorname{mid}(X, \Delta ; x) \leqslant \operatorname{mid}\left(X, \Delta ; x^{\prime}\right)$.

The oppor bound is n.

Lemma: $(X, \Delta) \log$ pair. There exists a finite partition X_{i} of X, so that each X_{i} is constructible and mid function is constant on $\left(X_{i}\right)_{d}$ for each i and d.
\rightarrow mid stratification is constructible

Theorem (Shokurov, 2004): ACC in dim $n+\angle S C$ in $\operatorname{dim} n$ \Longrightarrow Termination in $\operatorname{fim} n$

Sketch of the proof:

$$
\left(X_{1}, \Delta_{1}\right) \xrightarrow{n_{1}} \rightarrow\left(X_{2}, \Delta_{2}\right) \xrightarrow{n_{2}}\left(X_{3}, \Delta_{3}\right) \stackrel{\pi_{2}}{\cdots}
$$

$$
a_{i}=\operatorname{mld}\left(X_{i}, \Delta_{i} ; E x\left(\pi_{i}\right)\right) \geq 0
$$

Step 1: The minimum a_{i} stabilize.
There exists $a \geqslant 0$, so that $a_{i} \geqslant a$ for every i and $a=a_{1}$ for infinitely many i's.

$\left(x_{1}, \Delta_{1}\right)$ $\mathbb{Z}_{1}\left[\frac{1}{q}\right]$ where oily depends on $\left(X_{1}, \Delta_{1}\right)$ $a_{E_{i}}\left(X_{n}, \Delta_{1}\right) \leqslant a_{E_{i}}\left(X_{i}, \Delta_{i}\right)$ by monotonicity.

Infinite increasing sequence? This would violate ACC. a stabilizes and $a_{1}=a$ for infinitely many i's

Step 2: The maximal dimensional center, wherein the mild $a_{i}=a$ is attained stabilizes. We call it d.

Step 3: On each $\left(X_{i}, \Delta_{i}\right)$ there exists a closed sobvanely $W_{i} \subseteq X_{i}$ for which the following holds.

1) Each f-point x with mid $\left(X_{i}, \Delta_{i} i x\right)=a$ belongs bo W_{i},
2) each d-point $x \in W$: has mid $\left(X_{i}, \Delta_{i} ; x\right) \leq a$, and
3) each genenc f-point $x \in W_{i}$ has $m / d\left(X_{i}, \Delta_{i} ; x\right)=a$

This follows from stratification Lemma + LS.

Step 4: W_{i+1} is the proper transform of W_{i}.

Step 5: $W_{i} \ldots W_{i+1}$ stabilizer birational

Step 6: The transformation $W_{i} \rightarrow W_{i+1}$ are

Step 6: The transformation $W_{i} \longrightarrow W_{1+1}$ are binational $(m-d)$-contractions. Furthermore,
at least one d-point is contracted whenever $a_{i}=a$, and there exists a point x in $E_{x}\left(\pi_{i}\right)$ with $\operatorname{dim} x=d$ and $m / d\left(X_{i}, \Delta_{i} i x\right)=a$. ¿ infinitely many flips with this condition
This follows from Step 3 + Monotonicity.
eventually is bi-(m-d)-birational
Philosophy of the previous proof,

$$
\left(X_{1}, \Delta 1\right) \xrightarrow{r_{1}},\left(X_{2}, \Delta \Delta_{2}\right) \xrightarrow{r_{2}}\left(X_{3}, \Delta_{3}\right) \cdots \cdots
$$

$W_{i}=$ locus where the mild of $\left(X_{i}, \Delta_{i}\right)$ is computed.
If $W_{i} \subseteq E x\left(\mathbb{R}_{j}\right)$, then \quad mid $\left(X_{j}, \Delta_{j}\right)>\operatorname{mid}\left(x_{i}, \Delta_{i}\right)$,

- We used LSC to prove that ${ }^{\text {Wi }}$ is eventually flipped, or all flips are eventually disjoint from $W_{i} .1 \Longrightarrow m H$ increases
- We use ACC and the previous dot to get a contradiction

Log canonical thresholds:
$(X, \Delta) \mathrm{klt}, \quad E \geqslant 0$ on $X \quad Q$-Cartier.
We define lat $((X, \Delta)$ i $E)=\sup \{t \mid(X, \Delta+t E)$ is $\mid c\}$
Examples: $\operatorname{lct}\left(A^{n}, q H\right)=\frac{1}{q}$.
let $\left(A I^{2},\left\{x^{3}-y^{2}=0\right\}\right)=\frac{5}{6}$.

$$
H=\left.V\left(X_{1}^{\alpha_{1}}+\ldots+x_{n}^{\alpha_{n}}\right) \subseteq A\right|^{n}, \quad \left\lvert\, c t\left(\left.A\right|^{n}, H\right)=\min \left\{1, \sum_{i=1}^{n} \frac{1}{a_{i}}\right\}\right.
$$

Conjecture (AC Cfor let's): Let $\Delta 1$ be a set satisfying the DCC. Let n be a positive integer.
Then the set

$$
\operatorname{LCT}(\Lambda, n):=\left\{\begin{array}{l|l}
\operatorname{lct}((X, \Delta) ; H) & \begin{array}{ll}
(X, \Delta) & \text { ic }
\end{array} n-d_{\text {lm }} \\
H \subseteq X & \mathbb{Q}-C_{\text {artie }} \\
\operatorname{Coxff}(\Delta), & \operatorname{cosff}(H) \subseteq \Delta
\end{array}\right\} .
$$

satisfies the ascending chain condition

Birkar's approach to termination:
(X, Δ) is an effective pair $K_{x}+\Delta \sim_{\theta} H \geqslant 0$.

$$
\begin{aligned}
& \left(X_{1}, \Delta_{1}\right) \xrightarrow{n_{1}}\left(X_{2}, \Delta_{2}\right) \xrightarrow{n_{2}}\left(X_{3}, \Delta_{1}\right) \xrightarrow{n_{3}} \cdots \\
& H_{i}=\text { Ri* } H_{i-1} \text { inturtivel. }
\end{aligned}
$$

For each i, we can define $\lambda_{i}=\operatorname{lct}\left(\left(X_{i}, \Delta_{i}\right) ; H_{1}\right) \geq 0$.

$$
\begin{aligned}
& K_{x_{i}}+\Delta_{i} \sim Q H: \geq 0 . \quad \text { Then. } \\
& K_{x_{i}}+\Delta_{i}+\lambda H_{i} \sim Q(1+\lambda)\left(K x_{i}+\Delta_{i}\right)
\end{aligned}
$$

A flip for $k_{x_{i}}+\Delta$ is also a flip for $K_{x_{i}}+\Delta_{i}+\lambda H_{1}$.
Question: When does $\lambda_{i}>\lambda_{i-1}$?

$$
M n=f l i p p y \text { locos. }
$$

$$
\lambda_{i}=\operatorname{lct}\left(\left(X_{1}, \Delta i\right) ; H_{i}\right)
$$

$$
N=\operatorname{lcc}\left(X_{i}, \Delta_{i}+\lambda_{i} H_{i}\right)
$$

$$
\lambda_{i}=\lambda_{i+1}
$$

Remark: If the flipping loci does not contzin. the la then $\lambda_{i+1}=\lambda_{i}$.
$\{$ It the flipping loci does contain the la then $\lambda_{i+1}>\lambda_{i}$
only finitely many time.

Replace X with $X \backslash Z$.

$$
\operatorname{lct}((X, \Delta) ; H)<\operatorname{lct}\left(\left(X \backslash Z,\left.\Delta\right|_{x \backslash z}\right) ;\left.H\right|_{X \mid z}\right)
$$

\longleftrightarrow can happen only finildy many times.

$$
Z=\operatorname{lcc}((X, \Delta) ; H)
$$

In the model Y, the red loci appears with coeff one in the boundary of

$$
\psi^{*}\left(K_{x}+\Delta+\lambda H\right)=K \gamma+S+\ldots
$$

i) We lift the sequence of flips from X to Y.
ii) We perform adj to S and obtain a \longrightarrow by lower

Theorem (Birkan 2007):
Assume ACC for lat's in tim n

$$
t
$$

Assume termination of lower dim flips $(\leqslant n-1)$

Termination of flips for n-dim effective purr. Summary:
Try to study the most sing loci. of sequence of flip... $\rightarrow L S C$ the sequence must berminile around the most sing lou and the moot sing loci can change only finitely many times

$$
\rightarrow \text { ACC for mid's }
$$

$$
\rightarrow \text { ACC fo. lect's. }
$$

In BCHM:
$K x+\Delta$ is big, we hive a lot of sections $H_{h}, \ldots, H_{n} \in\left|K_{x}+\Delta\right|_{Q}$, we can produce a lot of thresholds:

$$
\operatorname{lct}\left((X, \Delta) ; \lambda_{1} H_{1}+\ldots+\lambda_{n} H_{n}\right)
$$

For certain choices of this thresholds, Z will again be of general type.
Then, flips should terminate over Z.

